Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-23366469

RESUMO

The aim of this study is to describe a new method for three-dimensional (3D) reconstruction of coronary arteries using Frequency Domain Optical Coherence Tomography (FD-OCT) images. The rationale is to fuse the information about the curvature of the artery, derived from biplane angiographies, with the information regarding the lumen wall, which is produced from the FD-OCT examination. The method is based on a three step approach. In the first step the lumen borders in FD-OCT images are detected. In the second step a 3D curve is produced using the center line of the vessel from the two biplane projections. Finally in the third step the detected lumen borders are placed perpendicularly onto the path based on the centroid of each lumen border. The result is a 3D reconstructed artery produced by all the lumen borders of the FD-OCT pullback representing the 3D arterial geometry of the vessel.


Assuntos
Angiografia Coronária/métodos , Vasos Coronários/fisiologia , Tomografia de Coerência Óptica/métodos , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional
2.
Artigo em Inglês | MEDLINE | ID: mdl-23366529

RESUMO

We present a three-dimensional model of plaque formation and progression that was tested in a set of patients who underwent coronary Computed Tomography angiography (CTA) for anginal symptoms. The 3D blood flow is described by the Navier-Stokes equations, together with the continuity equation. Mass transfer within the blood lumen and through the arterial wall is coupled with the blood flow and is modeled by a convection-diffusion equation. The Low Density Lipoprotein (LDL) transports in lumen of the vessel and through the vessel tissue (which has a mass consumption term) are coupled by Kedem-Katchalsky equations. The inflammatory process is modeled using three additional reaction-diffusion partial differential equations. A full three-dimensional model was created. Furthermore, features potentially affecting plaque growth, such as patient risk score, circulating biomarkers, localization and composition of the initial plaque, and coronary vasodilating capability were also investigated. The proof of concept of the model effectiveness was assessed 6 months after the baseline evaluation.


Assuntos
Algoritmos , Placa Aterosclerótica/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Angiografia Coronária , Feminino , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Placa Aterosclerótica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...